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ey Background

« RESEARCH GOAL.: To improve the precise localization of electromagnetic
transmitting sources in Earth-orbiting space, from receivers that are also in orbit

* The focus of this work could best be described as passive or uncooperative
localization, whereby there is no coordination between the transmitter(s) and
receiver(s)

* Localization is performed based only on knowledge of the received signal itself
— e.g. amplitude, phase, and frequency

* A time difference of arrival (TDOA) measurement is used to relate the transmitter
location to the receiver locations

— TDOA multiplied by signal travel speed (speed of light) yields range difference of arrival (RDOA)
— A polynomial system can then be developed and solved using various root-finding methods



it gt Space-to-Space Problem
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Localization problem involving only 2
receivers
— Can be performed with more than 2

Both the transmitter & receivers are in
Earth orbit

— Different from geolocation

For a space-to-space scenario, one of the
receivers is chosen as a “reference”
satellite

— Each RDOA equation is written in this

receiver’s relative (LVLH) frame

The solution of the localization problem is
determining the initial relative orbit of the
transmitter

/ Transmitting
satellite

Receivers




e e Polynomial Derivation

* Previous work shows that the TDOA equation is a second order polynomial in
terms of the transmitter’s instantaneous location coordinates x(t), y(t), z(t)

* The Clohessy-Wiltshire solution is a closed-form expression of the transmitter’s
relative orbit w.r.t. the reference orbit

— Dependent on transmitter’s relative orbit at initial (epoch) time, defined as x, y,, 2o, Xy, Vo, Zo
* Inserting the x(t), y(t), z(t) CW solution into the TDOA equation transforms it into
a second order polynomial in terms of these 6 parameters

* Provides a way to analytically check that coefficients produced are accurate



EMBRY-RIDDLE Scenario Setup

ity

* For a space-to-space scenario, one of the receivers is chosen as a
“reference” satellite, & each RDOA equation is written in this receiver’s
relative (LVLH) frame

* Our problem is then one of initial relative orbit determination (IROD)

* If we choose Receiver 1 as the reference, then the inputs/knowns are:

— Receiver 2 location (relative to Receiver 1) at each measurement time
— Range difference of arrival (RDOA) values at each measurement time

— Note that Receiver 1 location (relative to Receiver 1) at each measurement time
is ZERO



e e NS Scenario Setup

* For this work, we chose to focus on planar (2D) scenarios

— Transmitter and both receivers are all coplanar, therefore zy = z, =0
— Unknowns are X0, Y0,Z20, x.o, y.o
— 3D cases have been solved, but not in time for publication here

* A system of 4 second order polynomials is derived with 15 terms in
each polynomial

— sz,xOyO, Xox:o, etc
— 4 measurement times are required to solve for the 4 unknowns

* Two scenarios are presented
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Solving Scenarios

* Bezout's Theorem states that there are 16 (finite) solutions to the
polynomials

— Technically it states that there are (highest degree of the polynomial)*(number
of polynomial equations) finite solutions, but in our planar case 2*=16

* To
20t
(im
tec

solve these coup
n-century linear a
nlemented in MA’

ed multivariate polynomials, we employ an early
gebra-based technique developed by Macaulay

'LAB), and a numerical homotopy continuation

nnique called Bertini

* Polynomial scaling is included to improve solution accuracy
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* Re-write the system of equations in terms of an anchor variable
— Typically y, in the planar case or Z, in the full 3D case, treated as a constant
* A homogenization step makes the polynomial degree equal by adding a variable,
such that the coefficients and unknown monomials becomes
(May? + My + My) x =0
* Which can be solved as the generalized eigenvalue problem where the real, non-
infinite eigenvalues are possible solutions for the anchor variable

o 1 ] _[1 0]
M, -M; |" 70 My |

* There are 112 eigenvalues output, with an expected 16 finite values (though this is
not always the case if the process lacks the necessary precision)



el e Solving Scenarios: Bertini
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* Whereas Macaulay is an analytical (non-iterative) method, Bertini is a
numerical (iterative) method

* Begins with a number of “paths” equal to the Bezout number (in our
case 10)

« Each path undergoes an intricate process of convergence to
(hopefully) one of the solutions

» Convergence not guaranteed, a path may diverge to infinity

* Typically Bertini solutions tend to be more accurate than Macaulay, &
do not seem to require scaling of the polynomials
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» Experience has demonstrated that the system of equations are poorly
conditioned polynomials, requiring high precision for Macaulay to
accurately solve

— High condition number, 10°
— The magnitudes of the coefficients (from smallest to largest) encompass several
orders of magnitude

 Similar to Morgan’s SCLGEN algorithm, we scale the polynomials

— Variable substitution (scaling)

— Equation scaling

— Center coefficients around unity while simultaneously minimizing the variance
— Sum of squares means a global minimum can be found analytically

10°V [10** ay 7 + 10 10%asZ7y; + ...ass] = 0
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Method 1: Macaulay on original (unscaled) system
Method 2: Macaulay on scaled system

Method 3: Bertini on original (unscaled) system

Method 4: Bertini on scaled system



it et Scenario 1

* Consider the initial conditions

Transmitter State (1) | Receiver 1 State | Receiver 2 State
x(to), km 1 10 8
y(tog), km 11 -5 3
x(to), km/s 0.012 0.001 0.01
y(to), km/s 0.03 -0.02263 -0.008102
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* Polynomial Residuals
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* RDOA Residuals

RMS RDOA Error
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* Minimum RDOA solutions
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Value

Method 3

Method 4

Method 1

x(to)1, km
y(to)1, km
2(tg)1, km/s
y(to)1, km/s

0.9999+2.2039e-151
11.0000-3.1296e-151
0.0120-1.4352e-181
0.0300-1.2766e-171

1.0000+1.8415e-161
11.0000+2.9633e-161
0.0120+3.1000e-191
0.0300+3.0262e-191

1.0000
11.0000
0.0120
0.0300

x(to)2, km
y(to)2, km
x(tg)o, km/s
Y(to)a, km/s

4.4420+4.1027e-191
6.2422-1.0081e-181
0.0247-2.3899¢-211
-0.0009-1.1907e-211

4.4420-5.7957e-141

6.2422+7.7120e-141
0.0247+2.4027e-161
-0.0009+1.5554¢-161

4.4420
6.2422
0.0247
-0.0009




EMBRY-RIDDLE

Aeronautical University

Scenario 2

* Consider the initial conditions

Transmitter State (2)

Receiver 1 State

4.5
7
-0.022
0.05

10
-5
0.001
-0.02263
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Receiver 2 State

-0.008102
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* Polynomial Residuals
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* RDOA Residuals

RMS RDOA Error
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Value

Bertini

Bertini Scaled

Macaulay Scaled

x(to)1, km
y(to)1, km
x(tg)1, km/s
y(to)1, km/s

4.5000-1.3446¢-151

7.0000+3.8100e-151
-0.02200-1.7369e-181

0.0500+1.0680e-171

4.5000+2.3592e-151
7.0000-3.0616e-151

-0.0220+2.2918e-181
0.0500-7.4323e-181

4.5000
7.0000
-0.0220
0.0500

x(to)2, km
y(to)2, km
x(tg)e, km/s
y(to)e, km/s

-7.3008-6.3417e-171
26.2213+1.0809e-161
0.08202+3.0028e-191

0.003815+7.0990e-201

-7.3008-2.0800-141
26.2213+3.5745¢e-141
0.08211+9.4893e-171

0.003815+2.4885¢e-171

-7.3008
26.2213
0.0820
0.0038
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* Methods 2, 3, and 4 produced two results each that resulted in very
low RDOA residuals

* The downside is that both results appeared feasible

» By adding a 5" measurement, we should be able to distinguish which
is the true solution because only it should follow the dynamics

» Result is that the true solution is determined to within 10~ meters and
10® m/s and the additional solution may be discarded
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EMERYRIDOLE Conclusions and Future Work

» Astrolocation via RF transmission has been defined, measurement
converted to a polynomial system, and solutions provided via multiple
methods

 Continued research will include:

— 3D scenarios (unscaled and scaled)

— Adjusting solution precision (in MATLAB or other language)

— Computation time and implementation into flight-like hardware
— Statistical uncertainty models



