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• RESEARCH GOAL: To improve the precise localization of electromagnetic 
transmitting sources in Earth-orbiting space, from receivers that are also in orbit

• The focus of this work could best be described as passive or uncooperative 
localization, whereby there is no coordination between the transmitter(s) and 
receiver(s)

• Localization is performed based only on knowledge of the received signal itself
– e.g. amplitude, phase, and frequency

• A time difference of arrival (TDOA) measurement is used to relate the transmitter 
location to the receiver locations
– TDOA multiplied by signal travel speed (speed of light) yields range difference of arrival (RDOA)
– A polynomial system can then be developed and solved using various root-finding methods

Background



Space-to-Space Problem

• Localization problem involving only 2 
receivers
– Can be performed with more than 2

• Both the transmitter & receivers are in 
Earth orbit
– Different from geolocation

• For a space-to-space scenario, one of the 
receivers is chosen as a “reference” 
satellite
– Each RDOA equation is written in this 

receiver’s relative (LVLH) frame
• The solution of the localization problem is 

determining the initial relative orbit of the 
transmitter



• 

Polynomial Derivation



• For a space-to-space scenario, one of the receivers is chosen as a 
“reference” satellite, & each RDOA equation is written in this receiver’s 
relative (LVLH) frame

• Our problem is then one of initial relative orbit determination (IROD) 
• If we choose Receiver 1 as the reference, then the inputs/knowns are: 

– Receiver 2 location (relative to Receiver 1) at each measurement time
– Range difference of arrival (RDOA) values at each measurement time
– Note that Receiver 1 location (relative to Receiver 1) at each measurement time 

is ZERO

Scenario Setup
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Scenario Setup

 



• Bezout’s Theorem states that there are 16 (finite) solutions to the 
polynomials
– Technically it states that there are (highest degree of the polynomial)*(number 

of polynomial equations) finite solutions, but in our planar case 24=16
• To solve these coupled multivariate polynomials, we employ an early 
20th-century linear algebra-based technique developed by Macaulay 
(implemented in MATLAB), and a numerical homotopy continuation 
technique called Bertini

• Polynomial scaling is included to improve solution accuracy

Solving Scenarios
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Solving Scenarios: Macaulay’s Method



• Whereas Macaulay is an analytical (non-iterative) method, Bertini is a 
numerical (iterative) method

• Begins with a number of “paths” equal to the Bezout number (in our 
case 16)

• Each path undergoes an intricate process of convergence to 
(hopefully) one of the solutions

• Convergence not guaranteed, a path may diverge to infinity
• Typically Bertini solutions tend to be more accurate than Macaulay, & 
do not seem to require scaling of the polynomials

Solving Scenarios: Bertini



• Experience has demonstrated that the system of equations are poorly 
conditioned polynomials, requiring high precision for Macaulay to 
accurately solve
– High condition number, 109

– The magnitudes of the coefficients (from smallest to largest) encompass several 
orders of magnitude

• Similar to Morgan’s SCLGEN algorithm, we scale the polynomials
– Variable substitution (scaling)
– Equation scaling
– Center coefficients around unity while simultaneously minimizing the variance
– Sum of squares means a global minimum can be found analytically

Solving Scenarios: Polynomial Scaling



Method 1: Macaulay on original (unscaled) system
Method 2: Macaulay on scaled system
Method 3: Bertini on original (unscaled) system
Method 4: Bertini on scaled system

Solving Scenarios: Ordering



• Consider the initial conditions

Scenario 1



• Polynomial Residuals

Scenario 1



• RDOA Residuals

Scenario 1



• Minimum RDOA solutions

Scenario 1



• Consider the initial conditions

Scenario 2



• Polynomial Residuals

Scenario 2



• RDOA Residuals

Scenario 2



• Minimum RDOA solutions

Scenario 2



• Methods 2, 3, and 4 produced two results each that resulted in very 
low RDOA residuals

• The downside is that both results appeared feasible
 
• By adding a 5th measurement, we should be able to distinguish which 
is the true solution because only it should follow the dynamics

• Result is that the true solution is determined to within 10-9 meters and 
10-8 m/s and the additional solution may be discarded

Solution Disambiguation



         Scenario 1          Scenario 2

Solution Disambiguation



• Astrolocation via RF transmission has been defined, measurement 
converted to a polynomial system, and solutions provided via multiple 
methods

• Continued research will include:
– 3D scenarios (unscaled and scaled)
– Adjusting solution precision (in MATLAB or other language)
– Computation time and implementation into flight-like hardware
– Statistical uncertainty models

Conclusions and Future Work


